
PBDL Challenge on Low Light SRGB Image Enhancement

Chuanlong Xie1, Hongming Chen1, Mingrui Li2, Tianchen Deng3, Jingwei Huang4, Yufeng Li1
1Shenyang Aerospace University
2Dalian University of Technology
3Shanghai Jiao Tong University

4University of Electronic Science and Technology of China

Download link. The source code and pre-trained model are
available at https://drive.google.com/file/
d / 1tPxeQBzI _ ELlAmmoA70j2Xh98MxFFV4H /
view?usp=sharing.

Network architecture. Figure 1 illustrates the overall ar-
chitecture of our method. Specifically, the input x is first
reshaped to feature tensor via PixelUnshuffle (4× ↓) to pre-
serve original information, and then fed to 8 feature extrac-
tion modules. Finally, the output feature y is reshaped to
the original height and width of input x via Pixelshuffle
(4× ↑). The feature extraction module mainly contains a
feature rearrangement block (FRB), a feature enhancement
block (FEB), and a feed-forward network (FFN). Here, FRB
adopts MLP-based tensor dimensional transformations [2],
while FEB employs CNN-based local operators [1]. The
overall process can be represented as follows:

F1 = Conv [FRB (LN (F0)) ; FEB (LN (F0))] + F0,

F2 = FFN (LN (F1)) + F1,
(1)

where F0 denote the input features, F1 denote the interme-
diate features and F2 denote the output features. LN refers
to the layer normalization.

Training strategy. To supervise the training process, we
employ the L1 loss as the objective function. We conduct
model training on 4 NVIDIA TESLA V100s with 32GB
memory. In total, we perform 500 epochs of training. Dur-
ing the training, we adopt the Adam optimizer with a learn-
ing rate of 2 × 10−4. The patch size is set to be 768 × 768
pixels and the batch size is set to be 16. To augment the
training data, we apply random horizontal and vertical flips.
For testing images, we use one NVIDIA GeForce RTX 4090
GPU with 24GB memory.
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Figure 1. The network architecture of team SuperGo.
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