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1 Motivation

Diffusion models are increasingly applied in low-light image enhancement tasks due
to their exceptional capability to model data distributions, but an inherent drawback
of diffusion models in image restoration tasks is that starting the reverse process
from pure Gaussian noise can lead to artifacts [1, 2]. Therefore, as illustrated in Fig.
1, we adopt the Mean-Reverting Stochastic Differential Equation (SDE) [3] as the
base diffusion framework, directly implementing the mapping from low-quality to high
quality images.
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Fig. 1 (a) Conditional diffusion (b) Mean-Reverting SDE diffusion

The fundamental idea of diffusion models is to gradually corrupt images by inject-
ing noise, and then learn how to progressively remove this noise to reconstruct the
original image. U-Net plays a crucial role in this denoising process. It is trained to



predict the noise injected at each step, thereby methodically eliminating the noise and
restoring the image. The U-Net used in diffusion models typically consists of residual
blocks, upsampling and downsampling operations, and attention mechanisms. While
the stacking of multiple residual blocks is beneficial for feature extraction, it increases
the computational load, and the extensive convolutional operations are not friendly
to low pixel values in low-light images.

Our motivation is to reduce multiplication operations in U-Net, protect low pixel
values, and lighten the computational load. The simplified U-Net designed in this
paper, as illustrated in Fig. 2(a), is only constructed from the feature extraction
module SimpleGate [4] and Parameter-free attention [5] (SimPF) block, and includes
upsampling and downsampling operations, making it suitable for both processing low-
light images and reducing the resource consumption of the diffusion model for faster
sampling.

The code is available at https://github.com/MrWan001/SFDiff.
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Fig. 2 (a) U-Net with SimPF block. It is composed of SimPF blocks, upsampling and downsam-
pling operations, along with skip connections; (b) SimPF block. It retains necessary convolution and
normalization layers, incorporates SimpleGate and PFAM to minimize multiplication operations, and
utilizes Time Embedding to align with diffusion models.

2 Network Architecture

As shown in Figure 2(b), we designed the SimPF block with the idea of retaining
the necessary convolution and normalisation layers and using less computationally
intensive components to reduce multiplication operations across feature maps. We use
1 x 1 convolutions and 3 x 3 depth-wise separable convolutions for feature extraction,
both convolution types have been applied and proven effective in a variety of image
restoration tasks. Specifically, the feature map first undergoes a 1 x 1 convolution to
expand the number of channels while preserving spatial information. Subsequently, a
3 x 3 depth-wise separable convolution is employed to encode features from spatially
adjacent pixel positions, facilitating the learning of local image structures.

Since the activation function requires multiple multiplication operations, we use
SimpleGate to replace complex nonlinear activation functions. SimpleGate can achieve



the effect of nonlinear mapping through a single multiplication operation, which is par-
ticularly beneficial for preserving information in low pixel values, as complex functions
like the cubic operations required in the GELU activation function can be detrimental
to such information. The computation of SimpleGate is illustrated in Equation (1):

SimpleGate(X,Y)=X0OY (1)

X and Y represent the division of a feature map with channels C, height H, and
width W along the channel dimension into two parts of (<, H, W). The essence of
this multiplication operation is a type of nonlinear mapping that can substitute for
an activation function.

After the feature matrix has been given weights through Parameter-Free Attention
Mechanism (PFAM), a 1 x 1 convolution is used to aggregate pixel-level cross-channel
context information. The subsequent two 1 x 1 convolutions serve to facilitate interac-
tion and combination among features across different channels, creating more complex
and effective feature representations. In order to apply to the diffusion model, we
have incorporated a time embedding block, which takes the current diffusion time
step t as input and encodes t into the feature matrix, enabling the model to perceive
noise at different time steps ¢. Overall, the design of SimPF block, while minimizing
multiplication operations, maintains robust feature extraction capabilities.

3 Training Strategy

Our method is implemented using the PyTorch framework. The diffusion time step T’
is established at 100. A cosine scheduling scheme is utilized for noise scheduling. The
optimization is carried out using the LION optimizer. The batch size is set to 6. The
initial learning rate is set at 4 x 107°, and the Cosine Annealing strategy is employed
for learning rate scheduling. The model is trained on a single NVIDIA GeForce RTX
3090 GPU and converged after 300,000 iterations.

During the training phase, we first attempted to crop or randomly crop the center
of the training set to 256 x 256, but did not achieve good results. Finally, we resized
the training set to 256 x 256 and achieved good results. During testing, due to the
large size of 6720 x 4480, which exceeded the maximum range that the model could
handle, we first attempted to crop the image into 2240 x 2240 and merge it, but the
effect was not good. Finally, we resized the image to 480 x 320, and after using model
enhancement, we resized it to 6720 x 4480, achieving good results. In addition, due to
the unknown GT, we used the lpips metric to preliminarily evaluate the enhancement
results of the model. We found that our proposed SimPF block performed better on
the three images 1162, 496, 735, while the model trained on the original NAF block
performed better on the other test images. Therefore, we combined the results of the
two models to obtain the final version for submission.
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