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Abstract

Performing object detection and instance segmentation
under low-light conditions poses several challenges. e.g.,
images captured in low-light environments often suffer from
poor quality, leading to loss of detail, color distortion, and
prominent noise. These factors significantly hinder the per-
formance of downstream vision tasks, particularly object
detection and instance segmentation. To address this chal-
lenge, the CVPR 2024 PBDL Challenge Low-light Object
Detection and Instance Segmentation aims to assess and
enhance object detection algorithms’ robustness on images
captured in low-light environmental conditions. In this re-
port, we present our solution for tackling object detection
and instance segmentation in low-light conditions. Specif-
ically, we utilize DINO and Mask DINO as strong base-
line models, along with disturbance suppression learning
for training to enhance robustness against image noise, and
test-time augmentation with a suitable weighted box fu-
sion technique to further improve test accuracy. Ultimately,
our solution achieved box/mask AP of 0.75 and 0.59 in the
PBDL Challenge Low-light Object Detection and Instance
Segmentation.

1. Network Architecture

Object Detection. We utilized DINO as our foundational
network. As shown in Figure 1, DINO is an advanced end-
to-end Transformer detector that employs several innovative
techniques, including contrastive denoising training, look
forward twice, and mixed query selection. These techniques
significantly enhance both training efficiency and detection
performance. We chose DINO for our competition due to
its demonstrated efficiency and robustness in handling com-
plex detection tasks. Its high performance on benchmark
datasets make it an ideal choice for achieving competitive
results in the specific task of “Low-light Object Detection
and Instance Segmentation” competition.

Instance segmentation. We utilized Mask DINO [4] as
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Figure 1. Framework of DINO [7].
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Figure 2. Framework of Mask DINO [4].

our foundational network. As shown in Figure 3, Mask
DINO is a unified Transformer-based framework designed
for both object detection and image segmentation. This net-
work is an extension of DINO, which was originally de-
veloped for detection, and adapts it to handle segmenta-
tion tasks with minimal modifications to key components.
Mask DINO stands out due to its superior performance, out-
performing previous specialized models and achieving the
best results in instance, panoptic, and semantic segmenta-
tion tasks among models with fewer than one billion pa-
rameters.

One of the critical advantages of Mask DINO is its abil-
ity to enable task cooperation, demonstrating that detection
and segmentation can mutually enhance each other within
query-based models. Additionally, Mask DINO leverages
better visual representations pre-trained on large-scale de-
tection datasets to improve semantic and panoptic segmen-
tation. This synergistic approach not only enhances the per-
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Figure 3. Example scenes in LIS dataset. Four image types (long-exposure normal-light and short-exposure low-light images in both RAW

and sRGB formats) are captured for each scene.

formance but also provides a robust and versatile framework
capable of handling multiple vision tasks effectively. By
employing Mask DINO, we aim to leverage these strengths
to achieve superior results in the “Low-light Object Detec-
tion and Instance Segmentation” competition.

Feature alignment. We integrated the Feature-aligned
Pyramid Network (FaPN) [3] to enhance our network.
FaPN is a simple yet effective top-down pyramidal architec-
ture designed to generate multi-scale features for dense im-
age prediction. FaPN comprises two key modules: a feature
alignment module and a feature selection module. The fea-
ture alignment module learns transformation offsets of pix-
els to contextually align upsampled higher-level features,
while the feature selection module emphasizes lower-level
features rich in spatial details. Empirical results show that
FaPN consistently and substantially improves performance
over the original FPN across four dense prediction tasks and
three datasets.

We chose FaPN for our competition due to its demon-
strated ability to improve multi-scale feature generation.
Its integration into our network aims to leverage these
strengths, thereby enhancing our model’s accuracy in the
competition.

2. Low-light Instance Segmentation Dataset

To systematically investigate the effectiveness of the pro-
posed method in real-world conditions, a real low-light
image dataset for instance segmentation is necessary and
foundamental. The challenge utilizes the Low-light In-
stance Segmentation (LIS) dataset, introduced by [, 6].
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Figure 4. Framework of Disturbance Suppression Learning [1].

It is collected using a Canon EOS 5D Mark IV cam-
era. Figure 3 shows examples of annotated images from
LIS dataset. The LIS dataset exhibits the following charac-
teristics:

o Paired samples: The LIS dataset includes images in both
sRGB-JPEG (typical camera output) and RAW formats.
Each format consists of paired short-exposure low-light
and corresponding long-exposure normal-light images.
We term these four types of images sRGB-dark, sRGB-
normal, RAW-dark, and RAW-normal. To ensure pixel-
wise alignment, we mounted the camera on a sturdy tri-
pod and used remote control via a mobile app to avoid
vibrations.

e Diverse scenes: The LIS dataset consists of 2230 im-
age pairs collected in various indoor and outdoor scenes.
To increase the diversity of low-light conditions, we used
a series of ISO levels (e.g., 800, 1600, 3200, 6400) to
capture long-exposure reference images and deliberately



decreased the exposure time by various low-light factors
(e.g., 10, 20, 30, 40, 50, 100) to capture short-exposure
images, simulating very low-light conditions.

o Instance-level pixel-wise labels: For each image pair,
we provide precise instance-level pixel-wise labels anno-
tated by professional annotators. This results in 10,504
labeled instances across eight common object classes: bi-
cycle, car, motorcycle, bus, bottle, chair, dining table, and
TV.

The LIS dataset includes images captured in different
scenes (indoor and outdoor) and under varying illumina-
tion conditions. As shown in Figure 3, object occlusion and
densely distributed objects add to the challenges presented
by the low-light conditions.

3. Training and Testing Details

Training details. During training, we use a model pre-
trained on the Object365 dataset and fine-tuned on the
COCO dataset as our base. Our training setup includes 8
RTX 3090 GPUs, with a total batch size of 8. All other set-
tings are kept the same as in the original paper. We follow
the standard 1 x training schedule and apply weak data aug-
mentation techniques, including random horizontal flipping
with a probability of 0.5 and random resize-crop-resize.

Disturbance Suppression Learning. When fine-tuned on
COCO, we utilize the low-light RAW synthetic pipeline
from [1], which consists of two steps, namely, unpro-
cessing and noise injection, to obtain synthetic low-light
clean/noisy RAW images. We adopt disturbance suppres-
sion learning from previous work [1]. Ideally, a robust net-
work should extract similar features whether the input im-
age is corrupted by noise or not. To achieve this, we intro-
duce disturbance suppression learning, which encourages
the network to learn disturbance-invariant features during
training. This approach is independent of architectural con-
siderations.

The total loss for learning is defined as:
L(0) = Lis(x;0) + aLis(¢';0) + BLps(z, 2";60), (1)

where z is the clean synthetic RAW image, z’ is its noisy
version, and « and (3 are the weights of the respective losses.
We empirically set « = 1 and 3 = 0.01.

The loss Ljg is the task loss, e.g., instance segmenta-
tion loss, which consists of classification loss, bounding box
regression loss, and segmentation (per-pixel classification)
loss. The specific formula for Lig is related to the model,
we employ the same loss as the origianl model. This loss is
applied to both the clean image = and the noisy image x’ to
ensure the model performs consistently regardless of noise.

The loss Lps is the feature disturbance suppression loss,

defined as:
Lps(x,2';0) =Y |1 (x;0) — fO;0)[3, )
i=1

where f()(x;6) represents the i-th stage of feature maps
of the model. By minimizing the Euclidean distance be-
tween the clean features f(*)(z;6) and the noisy features
f@(2';6), the disturbance suppression loss encourages the
model to learn disturbance-invariant features. This reduces
feature disturbance caused by image noise and improves the
model’s robustness to corrupted low-light images.

Unlike perceptual loss [2], our approach does not require
pretraining a teacher model, making our training process
simpler and faster. With Lig(z; 6) and Lis(z’; 9), our model
can learn discriminative features from both clean and noisy
images, maintaining stable accuracy regardless of noise. In
contrast, the “student” model in perceptual loss [2] only
sees noisy images, which can degrade performance on clean
images and limit robustness. Additionally, the domain gap
between the feature distributions of the teacher and student
models can harm the learning process. By minimizing the
distance between clean and noisy features predicted by the
same model, we avoid this problem.

Testing details. During testing, we employ simple test-
time augmentation techniques such as horizontal flipping
and multi-scale testing. The multi-scale testing involves re-
sizing the shorter side of the image to various sizes: 400,
500, 600, 700, 800, 900, 1000, 1100, and 1200 pixels.
Horizontal flipping is also used to enhance model perfor-
mance. For detection, after obtaining ten predictions with
different scale augmentations, we use Weighted Box Fusion
(WBF) [5] to ensemble them for our final submission.

References

[1] Linwei Chen, Ying Fu, Kaixuan Wei, Dezhi Zheng, and Felix
Heide. Instance segmentation in the dark. ZJCV, 131(8):2198—
2218,2023. 2,3

[2] Abhiram Gnanasambandam and Stanley H Chan. Image clas-
sification in the dark using quanta image sensors. In ECCV,
pages 484-501, 2020. 3

[3] Shihua Huang, Zhichao Lu, Ran Cheng, and Cheng He. Fapn:
Feature-aligned pyramid network for dense image prediction.
In ICCV, pages 864-873, 2021. 2

[4] Feng Li, Hao Zhang, Huaizhe Xu, Shilong Liu, Lei Zhang,
Lionel M Ni, and Heung-Yeung Shum. Mask dino: Towards a
unified transformer-based framework for object detection and
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3041—
3050, 2023. 1

[5] Roman Solovyev, Weimin Wang, and Tatiana Gabruseva.
Weighted boxes fusion: Ensembling boxes from different
object detection models. [mage and Vision Computing,
107:104117, 2021. 3



(6]

(7]

Hong Yang, Wei Kaixuan, Chen Linwei, and Fu Ying. Craft-
ing object detection in very low light. In BMVC, pages 1-15,
2021. 2

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel Ni, and Heung-Yeung Shum. Dino: Detr with
improved denoising anchor boxes for end-to-end object de-
tection. In ICLR, 2023. 1



	. Network Architecture 
	. Low-light Instance Segmentation Dataset
	. Training and Testing Details

