
Technique Report of Team UnoWhoiam for CVPR 2024 PBDL Challenge
Low-light Object Detection and Instance Segmentation

Linwei Chen
Beijing Institute of Technology

chenlinwei@bit.edu.cn

Abstract

Performing object detection and instance segmentation
under low-light conditions poses several challenges. e.g.,
images captured in low-light environments often suffer from
poor quality, leading to loss of detail, color distortion, and
prominent noise. These factors significantly hinder the per-
formance of downstream vision tasks, particularly object
detection and instance segmentation. To address this chal-
lenge, the CVPR 2024 PBDL Challenge Low-light Object
Detection and Instance Segmentation aims to assess and
enhance object detection algorithms’ robustness on images
captured in low-light environmental conditions. In this re-
port, we present our solution for tackling object detection
and instance segmentation in low-light conditions. Specif-
ically, we utilize DINO and Mask DINO as strong base-
line models, along with disturbance suppression learning
for training to enhance robustness against image noise, and
test-time augmentation with a suitable weighted box fu-
sion technique to further improve test accuracy. Ultimately,
our solution achieved box/mask AP of 0.75 and 0.59 in the
PBDL Challenge Low-light Object Detection and Instance
Segmentation.

1. Network Architecture

Object Detection. We utilized DINO as our foundational
network. As shown in Figure 1, DINO is an advanced end-
to-end Transformer detector that employs several innovative
techniques, including contrastive denoising training, look
forward twice, and mixed query selection. These techniques
significantly enhance both training efficiency and detection
performance. We chose DINO for our competition due to
its demonstrated efficiency and robustness in handling com-
plex detection tasks. Its high performance on benchmark
datasets make it an ideal choice for achieving competitive
results in the specific task of “Low-light Object Detection
and Instance Segmentation” competition.

Instance segmentation. We utilized Mask DINO [4] as
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Figure 2: The framework of our proposed DINO model. Our improvements are mainly in the Trans-
former encoder and decoder. The top-K encoder features in the last layer are selected to initialize the
positional queries for the Transformer decoder. Our decoder also contains a Contrastive DeNoising
(CDN) part with both positive and negative examples.

additionally feed noised ground-truth (GT) labels and boxes into the Transformer decoder and train
the model to reconstruct the ground-truth ones. The noise (�x,�y,�w,�h) is constrained by
|�x| < �w

2 , |�y| < �h
2 , |�w| < �w, and |�y| < �h, where (x, y, w, h) denotes a GT box and

�1 is a hyper-parameter to control the scale of noise. Since DN-DETR view decoder queries as
anchors, a noised GT box can be viewed as a special anchor with a GT box nearby as � is usually
small. In addition to the orginal DETR queries, DN-DETR adds a DN part which feeds noised GT
labels and boxes into the decoder to provide an auxiliary DN loss. The DN loss effectively stabilizes
and speeds up the DETR training and can be plugged into any DETR-like models.

Deformable DETR (Zhu et al., 2021) is another early work to speed up the convergence of DETR.
To compute deformable attention, it introduces the concept of reference point so that deformable
attention can attend to a small set of key sampling points around a reference. The reference point
concept makes it possible to develop several techniques to further improve the DETR performance.
The first technique is query selection (or “two stage”), which selects features and reference boxes
from the encoder as inputs to the decoder directly. The second technique is iterative bounding box
refinement with a careful gradient detachment design between two decoder layers. We call this
gradient detachment technique “look forward once” in our paper.

Following DAB-DETR and DN-DETR, DINO formulates the positional queries as dynamic anchor
boxes and is trained with an extra DN loss. DINO additionally introduces three methods, which will
be described in Sec. 3.3, Sec. 3.4, and Sec. 3.5, respectively.

3.2 MODEL OVERVIEW

As a DETR-like model, DINO is an end-to-end architecture which contains a backbone, a multi-
layer Transformer (Vaswani et al., 2017) encoder, a multi-layer Transformer decoder, and multiple
prediction heads. The overall pipeline is shown in Fig. 2. Given an image, we extract multi-scale
features with a backbone, and then feed them into the Transformer encoder with corresponding po-
sitional embeddings. After feature enhancement with the encoder layers, we propose a new mixed
query selection strategy to initialize anchors as positional queries for the decoder. Note that this
strategy does not initialize content queries but leaves them learnable. More details of mixed query
selection are available in Sec. 3.5. With the initialized anchors and the learnable content queries,
we use the deformable attention (Zhu et al., 2021) to combine the features of the encoder outputs
and update the queries layer-by-layer. The final outputs are formed with refined anchor boxes and
classification results predicted by refined content features. As in DN-DETR, we have an extra DN
branch to perform denoising training. Beyond the standard DN method, we propose a new con-
trastive denoising training approach by taking into account hard negative samples, which will be
presented in Sec. 3.3. To overcome the shortsightedness of the greedy way for box refinement in
previous works, a novel look forward twice method is proposed to pass gradients between adjacent
layers, which will be described in Sec. 3.4.

1The DN-DETR paper (Li et al., 2022) uses �1 and �2 to denote noise scales of center shifting and box
scaling, but sets �1 = �2. In this paper, we use � in place of �1 and �2 for simplicity.
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Figure 1. Framework of DINO [7].
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Figure 1. The framework of Mask DINO, which is based on DINO (the blue-shaded part) with extensions (the red part) for segmentation
tasks. ’QS’ and ’DN’ are short for query selection and denoising training, respectively.

perform 2x upsampling of Ce. This segmentation branch
is conceptually simple and easy to implement in the DINO
framework, as shown in Fig. 1.

3.5. Unified and Enhanced Query Selection

Unified query selection for mask: Query selection has
been widely used in traditional two-stage models [28] and
many DETR-like models [37, 40] to improve detection per-
formance. We further improve the query selection scheme
in Mask DINO for segmentation tasks.

The encoder output features contain dense features, which
can serve as better priors for the decoder. Therefore, we
adopt three prediction heads (classification, detection, and
segmentation) in the encoder output. Note that the three
heads are identical to the decoder heads. The classification
score of each token is considered as the confidence to select
top-ranked features and feed them to the decoder as con-
tent queries. The selected features also regress boxes and
dot-product with the high-resolution feature map to predict
masks. The predicted boxes and masks will be supervised by
the ground truth and are considered as initial anchors for the
decoder. Note that we initialize both the content and anchor
box queries in Mask DINO whereas DINO only initializes
anchor box queries.
Mask-enhanced anchor box initialization: As summa-
rized in Sec 3.2, image segmentation is a pixel-level classifi-
cation task while object detection is a region-level position
regression task. Therefore, compared to detection, though
segmentation is a more difficult task with fine-granularity, it
is easier to learn in the initial stage. For example, masks are
predicted by dot-producting queries with the high-resolution
feature map, which only needs to compare per-pixel seman-
tic similarity. However, detection requires to directly regress

the box coordinates in an image. Therefore, in the initial
stage after unified query selection, mask prediction is much
more accurate than box (the qualitative AP comparison be-
tween mask prediction and box prediction in different stages
is also shown in Table 8 and 9). Therefore, after unified
query selection, we derive boxes from the predicted masks
as better anchor box initialization for the decoder. By this ef-
fective task cooperation, the enhanced box initialization can
bring in a large improvement to the detection performance.

3.6. Segmentation Micro Design

Unified denoising for mask: Query denoising in object
detection has shown effective [18, 37] to accelerate conver-
gence and improve performance. It adds noises to ground-
truth boxes and labels and feed them to the Transformer
decoder as noised positional queries and content queries.
The model is trained to reconstruct ground truth objects
given their noised versions. We also extend this technique to
segmentation tasks. As masks can be viewed as a more fine-
grained representation of boxes, box and mask are naturally
connected. Therefore, we can treat boxes as a noised version
of masks, and train the model to predict masks given boxes
as a denoising task. The given boxes for mask prediction
are also randomly noised for more efficient mask denoising
training. The detailed noise and its hyperparameters used in
our model are shown in Appendix B.2.
Hybrid matching: Mask DINO, as in some traditional mod-
els [2, 11], predicts boxes and masks with two parallel heads
in a loosely coupled manner. Hence the two heads can pre-
dict a pair of box and mask that are inconsistent with each
other. To address this issue, in addition to the original box
and classification loss in bipartite matching, we add a mask
prediction loss to encourage more accurate and consistent

Figure 2. Framework of Mask DINO [4].

our foundational network. As shown in Figure 3, Mask
DINO is a unified Transformer-based framework designed
for both object detection and image segmentation. This net-
work is an extension of DINO, which was originally de-
veloped for detection, and adapts it to handle segmenta-
tion tasks with minimal modifications to key components.
Mask DINO stands out due to its superior performance, out-
performing previous specialized models and achieving the
best results in instance, panoptic, and semantic segmenta-
tion tasks among models with fewer than one billion pa-
rameters.

One of the critical advantages of Mask DINO is its abil-
ity to enable task cooperation, demonstrating that detection
and segmentation can mutually enhance each other within
query-based models. Additionally, Mask DINO leverages
better visual representations pre-trained on large-scale de-
tection datasets to improve semantic and panoptic segmen-
tation. This synergistic approach not only enhances the per-
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(a) RGB-normal (b) RGB-dark (d) RAW-dark(c) RAW-normal

Figure 3. Example scenes in LIS dataset. Four image types (long-exposure normal-light and short-exposure low-light images in both RAW
and sRGB formats) are captured for each scene.

formance but also provides a robust and versatile framework
capable of handling multiple vision tasks effectively. By
employing Mask DINO, we aim to leverage these strengths
to achieve superior results in the “Low-light Object Detec-
tion and Instance Segmentation” competition.

Feature alignment. We integrated the Feature-aligned
Pyramid Network (FaPN) [3] to enhance our network.
FaPN is a simple yet effective top-down pyramidal architec-
ture designed to generate multi-scale features for dense im-
age prediction. FaPN comprises two key modules: a feature
alignment module and a feature selection module. The fea-
ture alignment module learns transformation offsets of pix-
els to contextually align upsampled higher-level features,
while the feature selection module emphasizes lower-level
features rich in spatial details. Empirical results show that
FaPN consistently and substantially improves performance
over the original FPN across four dense prediction tasks and
three datasets.

We chose FaPN for our competition due to its demon-
strated ability to improve multi-scale feature generation.
Its integration into our network aims to leverage these
strengths, thereby enhancing our model’s accuracy in the
competition.

2. Low-light Instance Segmentation Dataset

To systematically investigate the effectiveness of the pro-
posed method in real-world conditions, a real low-light
image dataset for instance segmentation is necessary and
foundamental. The challenge utilizes the Low-light In-
stance Segmentation (LIS) dataset, introduced by [1, 6].
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Figure 4. Framework of Disturbance Suppression Learning [1].

It is collected using a Canon EOS 5D Mark IV cam-
era. Figure 3 shows examples of annotated images from
LIS dataset. The LIS dataset exhibits the following charac-
teristics:

• Paired samples: The LIS dataset includes images in both
sRGB-JPEG (typical camera output) and RAW formats.
Each format consists of paired short-exposure low-light
and corresponding long-exposure normal-light images.
We term these four types of images sRGB-dark, sRGB-
normal, RAW-dark, and RAW-normal. To ensure pixel-
wise alignment, we mounted the camera on a sturdy tri-
pod and used remote control via a mobile app to avoid
vibrations.

• Diverse scenes: The LIS dataset consists of 2230 im-
age pairs collected in various indoor and outdoor scenes.
To increase the diversity of low-light conditions, we used
a series of ISO levels (e.g., 800, 1600, 3200, 6400) to
capture long-exposure reference images and deliberately
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decreased the exposure time by various low-light factors
(e.g., 10, 20, 30, 40, 50, 100) to capture short-exposure
images, simulating very low-light conditions.

• Instance-level pixel-wise labels: For each image pair,
we provide precise instance-level pixel-wise labels anno-
tated by professional annotators. This results in 10,504
labeled instances across eight common object classes: bi-
cycle, car, motorcycle, bus, bottle, chair, dining table, and
TV.

The LIS dataset includes images captured in different
scenes (indoor and outdoor) and under varying illumina-
tion conditions. As shown in Figure 3, object occlusion and
densely distributed objects add to the challenges presented
by the low-light conditions.

3. Training and Testing Details

Training details. During training, we use a model pre-
trained on the Object365 dataset and fine-tuned on the
COCO dataset as our base. Our training setup includes 8
RTX 3090 GPUs, with a total batch size of 8. All other set-
tings are kept the same as in the original paper. We follow
the standard 1× training schedule and apply weak data aug-
mentation techniques, including random horizontal flipping
with a probability of 0.5 and random resize-crop-resize.

Disturbance Suppression Learning. When fine-tuned on
COCO, we utilize the low-light RAW synthetic pipeline
from [1], which consists of two steps, namely, unpro-
cessing and noise injection, to obtain synthetic low-light
clean/noisy RAW images. We adopt disturbance suppres-
sion learning from previous work [1]. Ideally, a robust net-
work should extract similar features whether the input im-
age is corrupted by noise or not. To achieve this, we intro-
duce disturbance suppression learning, which encourages
the network to learn disturbance-invariant features during
training. This approach is independent of architectural con-
siderations.

The total loss for learning is defined as:

L(θ) = LIS(x; θ) + αLIS(x
′; θ) + βLDS(x, x

′; θ), (1)

where x is the clean synthetic RAW image, x′ is its noisy
version, andα and β are the weights of the respective losses.
We empirically set α = 1 and β = 0.01.

The loss LIS is the task loss, e.g., instance segmenta-
tion loss, which consists of classification loss, bounding box
regression loss, and segmentation (per-pixel classification)
loss. The specific formula for LIS is related to the model,
we employ the same loss as the origianl model. This loss is
applied to both the clean image x and the noisy image x′ to
ensure the model performs consistently regardless of noise.

The loss LDS is the feature disturbance suppression loss,

defined as:

LDS(x, x
′; θ) =

n∑
i=1

‖f (i)(x; θ)− f (i)(x′; θ)‖22, (2)

where f (i)(x; θ) represents the i-th stage of feature maps
of the model. By minimizing the Euclidean distance be-
tween the clean features f (i)(x; θ) and the noisy features
f (i)(x′; θ), the disturbance suppression loss encourages the
model to learn disturbance-invariant features. This reduces
feature disturbance caused by image noise and improves the
model’s robustness to corrupted low-light images.

Unlike perceptual loss [2], our approach does not require
pretraining a teacher model, making our training process
simpler and faster. With LIS(x; θ) and LIS(x

′; θ), our model
can learn discriminative features from both clean and noisy
images, maintaining stable accuracy regardless of noise. In
contrast, the “student” model in perceptual loss [2] only
sees noisy images, which can degrade performance on clean
images and limit robustness. Additionally, the domain gap
between the feature distributions of the teacher and student
models can harm the learning process. By minimizing the
distance between clean and noisy features predicted by the
same model, we avoid this problem.

Testing details. During testing, we employ simple test-
time augmentation techniques such as horizontal flipping
and multi-scale testing. The multi-scale testing involves re-
sizing the shorter side of the image to various sizes: 400,
500, 600, 700, 800, 900, 1000, 1100, and 1200 pixels.
Horizontal flipping is also used to enhance model perfor-
mance. For detection, after obtaining ten predictions with
different scale augmentations, we use Weighted Box Fusion
(WBF) [5] to ensemble them for our final submission.
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